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Effects of relativity on the time-resolved tunneling of electron wave packets
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We solve numerically the time-dependent Dirac equation for a quantum wave packet tunneling through a
potential barrier. We analyze the spatial probability distribution of the transmitted wave packet in the context
of the possibility of effectively superluminal peak and front velocities of the electron during tunneling. Both
the Dirac and Schro¨dinger theories predict superluminal tunneling speeds. However, in contrast to the Dirac
theory the Schro¨dinger equation allows a possible violation of causality. Based on an analysis of the tunneling
process in full temporal and spatial resolution, we introduce an instantaneous tunneling speed that can be
computed inside the potential barrier.
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I. INTRODUCTION

The phenomenon of tunneling in which a quantu
mechanical particle can penetrate a repulsive barrier wi
height that exceeds the total energy of the particle is co
terintuitive. Any explanation or intuition for this proces
based on classical mechanics fails. At the same time,
effect is extremely important and has been studied wid
The Josephson effect in high-speed semiconductors@1#, b
decay in nuclear physics, and instantons in high-ene
physics are just a few examples. In the early 1930s it w
already recognized that there was no appreciable temp
delay in the transmission of wave packets through barr
@2#. Wigner discussed the possibility that a particle can
fectively travel faster than the speed of light when pass
through the barrier. Chiao and co-workers have more
cently addressed the realization of superluminal speeds
more systematic way. They used a periodic potential bar
to demonstrate experimentally that superluminal veloci
can indeed be obtained, and showed that this result doe
violate causality.

In this article we intend to address the following que
tions: Can one trust the predictions of a nonrelativistic the
at all if superluminal effects are being investigated? H
accurate are these predictions? Does the relativistic quan
theory predict superluminal speeds? Does a fully relativi
treatment of tunneling increase or reduce the tunneling p
ability? Does the existence of superluminal velocities im
the violation of Einstein’s causality when they are compu
in the framework of the Schro¨dinger equation? Can causali
be restored in the Dirac theory? Can one define a phys
quantity that describes the time evolution of a wave pac
inside the barrier which reduces to the regular peak velo
when calculated from a wave packet that is outside the
rier? Due to its lacking a counterpart in classical mechan
it is not obvious how to apply any intuition to relativisti
quantum-mechanical tunneling and to predict any answer
these questions. A full Dirac theory calculation seems n
essary.

Quite remarkably, despite the large amount of literat
on nonrelativistic tunneling, we are aware of only two wor
@3# that have addressed some of these questions. Leaven
Aers @3# used the stationary-state approach to anal
1050-2947/2001/63~3!/032107~8!/$15.00 63 0321
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Larmor-clock transmission times for single and double re
angular barriers. In some special cases the problem
quantum-mechanical tunneling can be mapped onto the f
relativistic problem of evanescent electromagnetic radiat
@4–7#.

For the special case of nonrelativistic tunneling, the qu
tion of how much time it takes a particle to pass the barr
has triggered considerable controversial debate to the pre
day. Even though by 1993 the community had largely
cepted the fact that there actually is a time scale associ
with the duration of tunneling, there is still a lack of conse
sus with regard to the existence of a unique expression
this time scale and on the exact implications of this expr
sion @8#. In fact, Hauge and Stovneng@9# stated that with the
exception of two candidates all expressions for tunnel
times have logical flaws sufficiently serious that they must
rejected. The only two survivors are the dwell time@10# and
the asymptotic phase time@8,9#, which have complementary
weaknesses.

In this article, we stay away from most of the controve
sial issues and focus on investigating the effect of relativ
on the tunneling process. Our model system is an elec
that tunnels through a one-dimensional repulsive barrier.
time evolution of this system is given by the solution of t
Dirac equation

i ]C/]T52 icax]C/]x1c2bC1W~x!C, ~1.1!

where the repulsive potentialW(x) is centered aroundx
50 and has an effective width ofw and a heightW0 .
In order to check the generality of our results we ha
used a variety of different tunneling potentialsW(x)
5W0 exp@2(2x/w)n#. For large even integersn we recover
the rectangular barrier for which the energy eigenstates
be found analytically and also some approximate analyt
estimates can be derived. Hereax and b denote the 434
Dirac matrices. The time-dependent solution of the spi
wave functionC(x,T)5@C1 ,C2 ,C3 ,C4# can be obtained
numerically on a space-time grid using a split-operator al
rithm based on fast Fourier transformation that is accurate
to fifth order in time @11#. In all of our simulations, the
spatial axis was discretized into at least 65 536 grid po
which together with up to 1 500 000 temporal points led
fully converged results.
©2001 The American Physical Society07-1



te

i
us
it

e
e

-

-
ei

u
ng
hr
ou

ed
at
nc
e

ve
th
he
er
s
n

d
u

re
pa

he
e

k
is
t

e

e of
is

so-

l
he
yti-

g
we

ow,

pli-
e

P. KREKORA, Q. SU, AND R. GROBE PHYSICAL REVIEW A63 032107
As an incoming electron wave packet we used the sta

C~x,T50!5N exp@2~x2x0!2/~4Dx2!#exp~ ik0x!c~k0!,
~1.2!

where the spinor c(k0) is given by @1,0,0,ck0 /
(E012c2)# and the normalization factor N[@(E0

12c2)/(2(E01c2)DxA2p)#1/2. Here the total energyE0

[A@c41c2k0
2#2c2. The central canonical momentumk0 is

related to the initial speedv0 via v05k0 /A@c21k0
2#. We

should mention that, instead of a Gaussian distribution
position space, we could have equally well chosen a Ga
ian in momentum space, which in the nonrelativistic lim
v0!c would yield the same state as Eq.~1.2!. The initial
location of the wave packetx0 was chosen far enough to th
left of the barrier that the total spatial probability for positiv
values ofx was negligible at timeT50. The total energy
E05A@c41c2k0

2#2c2 in our case will be consistently cho
sen smaller thanW0 . The potential heightW0 was also cho-
sen smaller than 2c2 to avoid the effect of the negative
energy continuum as characteristic of the so-called Kl
paradox@11–13#. This will restrict our initial velocities to
v0,0.94c (5129 a.u.). The potential heightW0 was cho-
sen to be 1.5 times the kinetic energyE0 such that we can
essentially exclude the effect of high-momentum contrib
tions that can simply pass over the barrier without tunneli
Please note that the predictions of the corresponding Sc¨-
dinger equation can be obtained quite conveniently in
numerical simulations by increasing the ‘‘parameter’’c to
infinity @14#.

The most direct way to ‘‘measure’’ the electron’s spe
inside the barrier would be to compare its ‘‘position’’
various times during the tunneling. However, the wave fu
tions are essentially delocalized during the scattering ev
and previous definitions of effective average tunneling
locities under the barrier were based on extrapolating
information from the positive or negative spatial delay of t
scattered wave packets outside the tunneling region. Aft
discussion of these effective velocities and a critical analy
of their regime of validity, we will propose in the last sectio
an instantaneous tunneling speed that can be calculate
rectly from the wave packet inside the barrier. It turns o
that the dynamics can be roughly divided up into two
gimes depending on the relative magnitude of the initial s
tial width in the Gaussian wave packetDx and the barrier
width w. We will discuss them separately below.

II. THE RELATIVISTIC MODIFICATION OF THE
WIGNER TUNNELING SPEED

A. Spatially broad wave packets: DxÌw

With the exception of an overall amplitude reduction t
wave packet does not get significantly distorted as it tunn
through the barrier for the caseDx.w. In this regime the
center of mass for the transmitted wave packet~denoted in
the following by ^x& t! agrees approximately with the pea
value of the spatial probability density. For the nonrelativ
tic case this regime has been studied very intensively as
stationary-phase approximation is qualitatively reliable, p
03210
n
s-

n

-
.
o
r

-
nt
-
e

a
is

di-
t
-
-

ls

-
he
r-

mitting some analytical investigations based on the phas
the complex transmission amplitude. Below we will test th
approximation and compare it with the exact numerical
lution of the time-dependent Dirac and Schro¨dinger equa-
tions.

For the special case ofn→` in the mentioned mode
potential we recover the rectangular barrier, for which t
complex transmission amplitude can be derived fully anal
cally asut(k,w,W0)uexp@ia(k,w,W0)#, where

t~k,w,W0!5
exp@2 ikw#

cosh~kw!1 i @~12G2!/2G#sinh~kw!
,

~2.1!

a~k,w,W0!52kw2 tan21F ~12G2!

2G
tanh~kw!G ,

~2.2!

and where

k[
1

c
Ac42~E1c22W0!2 and

G[AE~E12c22W0!/~E12c2!~W02E!.

Comparing the tunneling probabilityut(k,w,W0)u2 obtained
from Eq. ~2.1! with its nonrelativistic limit~calculated from
setting c→`! we find that relativity reduces the tunnelin
efficiency but increases the effective tunneling speed as
will see below; a result that might be counterintuitive.

In the stationary-phase approximation discussed bel
the center of the transmitted wave packet^x(T)& t at timeT
can be calculated from

^x~T!& t5x02
da~k!

dk U
kp

1
dE~k!

dk U
kp

T, ~2.3!

where the energyE(k)[A@c41c2k2#2c2, and the right-
hand side has to be evaluated at the momentumkp for which
the product of the absolute value of the momentum am
tude andutu takes its maximum value. After some algebra w
obtain

2
da~k!

dk
5w2

c2k

2~E1c2!@11@~12G2!2/4G2#tanh2~kw!#

3H W0

2 S 1

G
1G D tanh~kw!F 1

E~W02E!

1
1

~E2W012c2!~E12c2!
G1

w

k S 1

G
2G D

3sech2~kw!F12
~W02E!

c2 G J , ~2.4!

dE~k!

dk
5

c2k

Ac41c2k2
. ~2.5!
7-2
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EFFECTS OF RELATIVITY ON THE TIME-RESOLVED . . . PHYSICAL REVIEW A63 032107
Equation~2.4! predicts that the distance2da(k)/dkuk0
is

always smaller thanw; in other words, the tunneling proces
cannot advance the packet by more than the width of
potential. Only if the tunneling were to happen instan
neously could we obtain a spatial shift with its maximu
valuew. This is consistent with the condition of the validit
of the stationary-phase approximation, which requires t
the momentum scale on which the phasea(k) varies
„'a/@da(k)/dk#… should be larger than the momentu
width of the Gaussian wave packetDk.

The parameter 1/(2Dx)5Dk is the momentum width ac
cording to the Heisenberg uncertainty relation. IfDk is
smaller than the momentum scale on whicht(k) varies, i.e.,
Dk,utu/@dut(k)u/dk#, then the central velocity of the trans
mitted wave packet, denoted byv t5^C tucaxuC t&, agrees
with that of the initial wave packet,v t'v0 , such that the
distance between the peaks of the transmitted packet and
that propagated without any barrier is just given by^x(T)& t

2^x(0)(T)&52da(k)/dkuk0
, wherek05v0 /A12v0

2/c2.
The fact that the propagation velocities on the two sid

of the barrier can be different (v t.v0) @15# has been noted
earlier for the nonrelativistic case. Becauseut(k)u always in-
creases monotonically withk, the smaller momentum com
ponents in the wave packet are attenuated more during
tunneling, such that the emerging ‘‘truncated’’ wave pac
has higher average momentum. This effect has been
scribed in the literature as an effective electron accelera
@8,16#. For the case wherekp is significantly larger thank0 ,
the distancê x(T)& t2^x(0)(T)& between the peaks of th
tunneled and~barrier! free-wave packet increases as a fun
tion of time. In order to provide a more unambiguous co
parison, the tunneled wave packet could be compared w
special free-wave packet whose initial momentum am
tudes were multiplied initially by the transmission amplitu
ut(k)u, in order to compensate for the attenuated lo
momentum components and to have the same average v
ity v t as the tunneled packet. In this comparison, the dista
between the peakŝx(T)& t2^x̃(0)(T)& does not depend on
time and is equal to

D[^x~T!& t2^x̃~0!~T!&52da~k!/dkuk0
. ~2.6!

Clearly, without any ambiguity, this parameterD can be cal-
culated directly from the wave packet. To associate aneffec-
tive average tunneling velocity across the potential with t
distanceD, we define a quantityve as

ve[
w

T2~T11T2!

5
w

T1~w/21x0!/v01@w/22^x~T!&#/^v~T!& t
,

~2.7!

where T1[(2w/22x0)/v0 and T2[@^x(T)& t
2w/2#/^v(T)& t correspond to the time intervals spent ou
side the potential region2w/2,x,w/2. If v05v t this defi-
nition reduces tove5v0w/(w2D). At this point we should
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stress that the ‘‘speed’’ve is just a defined quantity similar to
the concept of a ‘‘tunneling time.’’ It is by no means cle
whether the propagation of the peak through the barrie
really a microscopically correct physical picture in descr
ing the center-of-mass motion as it tunnels through the b
rier. We will comment on this question in more detail in Se
III. Here we plot the ‘‘speed’’ defined in Eq.~2.7! in Fig. 1
as function of the barrier widthw. The graphs turns out to b
quite helpful in many respects.

First of all, we should mention that the marke
correspond to the exact wave-packet solutions to
time-dependent Schro¨dinger ~circles! and Dirac ~crosses!
equations. For the Dirac case we have computed
quantum-mechanical spatial probability densityP(x,T)
5( i 51

4 uC i(x,T)u2, where the summation extends over t
four spinor components. For each barrier widthw we have
evolved the initial wave packet in time and then measu
the distanceD between the maxima of the tunneled a
force-free wave packets which was then converted into
effective speedve according to Eq.~2.7!. In each case the
peak position differed by less than 1022% from the center of
mass of the packet. So the transmitted state is quite sym
ric for these parameters. The agreement between the e
numerical data and the analytical prediction shows that
stationary-phase approximation leading to Eq.~2.3! is reli-
able in the relativistic and nonrelativistic cases for these
rameters.

Second, having established the validity of the approxim
tion in Eq. ~2.3!, we point out the difference between th
relativistic and nonrelativistic tunneling speeds. For our i
tial velocity of v05100 a.u. the nonrelativistic tunnelin
speedve turns out to be 20% smaller than the relativis
speed. This result is a little surprising as one typically e
pects that smaller velocities are associated with relativi
corrections such as the nonlinear mass increase. In fact
result is in contrast to that of Leavens and Aers@3#, who
reported a reduction of the tunneling speed due to relati
for the case of a double-rectangular potential.

Relativistic as well as nonrelativistic theories consisten
predict that for a sufficiently large barrier width~w.0.023
and 0.038 a.u., respectively! the effective tunneling spee
can exceed the speed of light and become superlumina

FIG. 1. Comparison of the relativistic and nonrelativistic pred
tions for the tunneling speed defined in Eq.~2.7!. The solid lines are
the predictions from the approximate analytical relativistic and n
relativistic theories. The open circles and crosses are obtained
the exact spatial probability densities calculated from the Sch¨-
dinger and Dirac equations. The parameters werex052100 a.u.,
Dx520 a.u.,v05100 a.u.,T52 a.u., andW051.5E0 .
7-3
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P. KREKORA, Q. SU, AND R. GROBE PHYSICAL REVIEW A63 032107
fact, for a large barrier widthw, the tunneling velocityve
given in Eq.~2.7! simplifies because the spatial delay tak
the form

D5w2
c2kW0G

~11G2!E~E1c2!~W02E!

3F11
E~W02E!

~E12c2!~E12c22W0!
G . ~2.8!

In the nonrelativistic case this phenomenon is called
Hartman effect @17#, when D(c→`)5w2A2/(W02E),
andve→v0wA(W02E)/2 increases linearly withw.

Third, the two graphs forw50 are different from the
initial velocity v0 as one could have conjectured. In fact, t
regime of small barrier widths is characterized by tunnel
velocities smaller thanv0 . In other words, the center of th
tunneled wave packet falls behind the force-free one in
case, associated with a negative distanceD in this regime.

The stationary-phase approximation allows in general
determination of the locationxp of a function uC(x)u
[u*dk C(k)exp@if(k,x)#u at which it takes its maximum
value. This peak valuexp is obtained from the condition
df(k,xp)/dk50, where the derivative is evaluated whe
the ~real! functionC(k) peaks,k5kp . By Taylor expanding
the phasef as well asC(k) aroundkp one can see that
breakdown of this approximation is associated with nonz
third-order derivatives inC(k) or f. In the context of our
situation, the functionC(k) corresponds to the product of th
energy state amplitude and the absolute value of the tr
mission coefficient andf(k,x), which is defined asa(k)
1k(x2x0)2E(k)T. If we decrease the initial spatial widt
of the wave packetDx, Dk increases and the functionC(k)
becomes more asymmetric, and an increasing third-order
rivative d3C(k)/dk3 will lead to a breakdown of the
stationary-phase approximation. Equivalently, this bre
down can also be caused by an increase of the barrier w
w, leading to an increase of the third-order derivati
d3f(k)/dk3.

In order to demonstrate this breakdown of the stationa
phase approximation for larger barrier widths, we show
Fig. 2 similar graphs as in Fig. 1 but on a larger scale for
barrier width. We see that in the regime in which the barr
width w approaches the spatial width of the initial stateDx
~which was chosen to beDx54 a.u. in this simulation! the

FIG. 2. The same graph as in Fig. 1 but on a larger scale
width w to show the breakdown of the analytical predictions
w.Dx. Same parameters as in Fig. 1, butDx54 a.u..
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predictions of the analytical curves become less reliable
fact, as we will demonstrate in Sec. II B, the definition of t
spatial delay based on the peak value becomes meaning

Let us finish this section with a comment on the relati
of superluminal speeds and the possible violation of E
stein’s causality. We agree with the work of Chiao and c
workers, who point out that superluminal tunneling spee
are just a pulse-reshaping effect and therefore do not ne
sarily violate Einstein’s causality. Other works@18# have ar-
gued that causality is not violated, because of the str
attenuation suffered by the transmitted signal. The spe
theory of relativity could be violated if the total spatial pro
ability of the tunneled packet to find the particle to the rig
of positionx, i.e., *x

`dxuC(x,T)u2, were larger than the cor
responding probability for a fictitious wave packet that h
moved with the speed of lightc, i.e., *x

`dxuC(x2cT,T
50)u2. The latter is defined by a wave packet that has b
shifted from its initial position by the amountcT, whereT is
again the total time. Due to the relativistic suppression
spatial spreading first discussed in@19,20#, the width of this
‘‘light-cone’’ packet is identical to its initial widthDx. A
nonrelativistic theory, however, does not take this relativis
effect into account, and the wave front of a Schro¨dinger state
with a relatively large initial speed close toc can actually
exceed the integrated light-cone probability due to spread
and therefore violate causality.

We demonstrate this violation of causality in Fig. 3 whe
we have evolved the same initial state withv0
5136.411 a.u. andDx51 for T58.027 08 a.u. using the
Dirac and the Schro¨dinger theories. The thick line shows th
light-cone probability. The sufficient condition for a viola
tion of causality, *x

`dxuC(x,T)u2.*x
`dxuC(x2cT,T

50)u2, leads to x.1001.5 a.u. for the~nonrelativistic!
Schrödinger wave packetC(x,T). Clearly, causality is vio-
lated in the regionx.1001.5 a.u. for the nonrelativistic wav
packet. On the other hand, the corresponding time-evol
wave function obtained from the Dirac equation is locat
entirely to the left of the light front and we hav
*x

`dxuC(x,T)u2,*x
`dxuC(x2cT,T50)u2 for the entire

spatial domain. The latter result can even be shown ana
cally @14#; the integral kernel associated with the free tim
Dirac evolution operator vanishes outside the light co
therefore preventing any acausal behavior. In other word
a spinor has a compact support in a finite domain of radiux,

f

FIG. 3. The final spatial probability obtained from the solutio
of the Dirac and Schro¨dinger equations. The thick line is the ligh
cone probability as defined in the text. The parameters werex0

52100 a.u.,Dx51 a.u.,v05136.411 a.u., andT58.027 08 a.u.
7-4
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EFFECTS OF RELATIVITY ON THE TIME-RESOLVED . . . PHYSICAL REVIEW A63 032107
then at timeT the state vanishes outside a domain of rad
x1cT, which, of course, is not true for the Schro¨dinger
equation.

To summarize, if tunneling is treated within the fram
work of the Dirac theory, causality cannot be violated
principle. This agrees with the conclusion@18,21# that the
peak amplitude of the pulse emerging from the barrier
always lower than the amplitude that the pulse would hav
the same instant of time if it were just propagating atc with-
out attenuation.

B. Spatially narrow wave packets: DxËw

As we have demonstrated in Fig. 2, if the spatial wid
Dx is of the same order as the width of the potential bar
w, the stationary-phase approximation becomes unrelia
and one does not have the additional benefit of analyt
approximations. In this regime the momentum scale
which the complex phase of the transmission amplitude v
ies, a/(da/dk), is larger than the momentum width of th
wave packet. As a result, each momentum amplitude h
quite different complex phase and the superposition of
momentum states does not lead to a simple Gaussian-sh
spatial probability distribution as in the initial state. In fac
the spatial density of the transmitted pulse can be mu
peaked with peak sizes varying as a function of time. In

FIG. 4. The spatial probability densityP(x) before, during, and
after scattering off a square potential barrier at timesT50, 0.05,
and 0.1 a.u. The vertical dashed line indicates the location of
potential atx50. The parameters werex0525 a.u.,Dx50.5 a.u.,
v05100 a.u.,w50.05 a.u., andW051.5E0 .
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space-time picture this could be interpreted as a kind of t
neling resonance. In fact, even the reflected density need
be describable by a simple spatial Gaussian. After the w
packet has tunneled through the barrier, its time evolutio
described by that of a free particle whose center increa
linearly in time independent of the spatial and temporal
terference oscillations.

III. TIME-RESOLVED TUNNELING UNDER THE
POTENTIAL BARRIER

In this section we will analyze the tunneling process fro
a microscopic point of view. In Figure 4 we present sna
shots of the spatial probability of the electron at initial, i
termediate, and late times. As the initial wave packet w
prepared to the left of the barrier, the probability density
the region2w/2,x,w/2 vanishes until the front edge o
the incoming wave packet enters the barrier. Then the d
sity grows and after the tunneling process it reduces bac
zero. Clearly, at each time the density inside the barrier
creases monotonically as a function ofx, as shown in Fig. 5.
This stresses the point we made earlier that it is not trivia
trace directly the peak motion under the barrier. The alm
parallel lines in the logarithmic plot for the region under t
barrier indicate the exponential spatial decay. If these li
were actually precisely parallel, then the tunneling proc
could take place instantaneously in principle. The details
the incoming wave packet atx52w/2 could then be instan
taneously transmitted and copied over to the transmitted
tion at x5w/2. On the other hand, we have shown in t
previous section that the tunneling process does not hap
instantaneously and requires a finite time associated with
fective sub- or superluminal speeds.

As a side remark we should mention that, in contrast
the stationary solutions of the Schro¨dinger equation whose
derivatives atx56w/2 are continuous, the Dirac equation

e

FIG. 5. The spatial probability density displayed in the spa
region near and inside the barrier at various timesT in a.u. Same
parameters as in Fig. 4.
7-5
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P. KREKORA, Q. SU, AND R. GROBE PHYSICAL REVIEW A63 032107
principle permits its stationary solution to have a discontin
ous derivative at the interfaces. Our time-dependent calc
tions, however, suggest that the wave-packet solution is
tually smooth at these boundaries.

To investigate the mechanism of the tunneling in mo
detail, we have defined a quantity that will provide us w
additional insight. For a given locationx, we have computed
numerically from our time-dependent wave function soluti
that specific time~which we denote byTp! at which the
spatial probability densityP(x,T) takes its maximum value

max(
i 51

4

uC i~x,T!u25(
i 51

4

uC i~x,Tp!u2. ~3.1!

Inside the barrier the wave function is certainly not spatia
localized, as it always takes its spatial maximum at the
edgex5w/2, but it istemporally localizedsuch that the peak
time Tp(x) can be unambiguously defined and calcula
under the barrier as well. Before the wave packet arrive
the boundary,T!(2x02w/2)/v0 , the function Tp(x) is
given by the linear dependenceTp(x)5(x2x0)/v0 for x!
2w/2, if the wave-packet spreading is not significa
@19,20#. Here the inverse value of the slope is the incom
velocity v0 .

In Fig. 6 we display the locationx as a function of this
temporal peak time~3.1! around and inside the barrier. Fo
comparison we have indicated by the straight line the re
obtained from a wave packet without any tunneling barr
x(0)(T)5v0T1x0 . There are two striking observations.

First, due to the details of the scattering process at the
edge of the barrier and the resulting interference of the
coming and reflected wave packets, the peak time for
tunneling case is actually different from that of the cor
03210
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sponding force-free wave packet atx52w/2. For our cho-
sen parameters, it turns out that this arrival time is actua
larger than that associated with the free electron.

A second observation is about the region inside the b
rier. We can define aninstantaneoustunneling speedvT as

vT5
1

dTp~x!/dx
, ~3.2!

which is a continuous function of the locationx and whose
value can be read off the graph.

For the special case of the square-well potential, the a
lytical form of the stationary states inside the potential
known and it is possible within the framework of th
stationary-phase approximation to derive analytical formu
for this instantaneous tunneling velocity as a function of
distance:

FIG. 6. The locationx as a function of the temporal-peak time
The dashed line corresponds to the graph associated with a
wave packet in the absence of any scattering potential. The o
circles denote the prediction according to the analytical form
based on the stationary-phase approximation@Eq. ~3.4!#. The pa-
rameters were x052100 a.u., Dx520 a.u., v05100 a.u., w
50.01, andW051.5E0 .
1/vT5dTp~x!/dx

5
kW0GB1 sech2@k~x2w/2!#$12G2 tanh2@k~x2w/2!#%

2$11G2 tanh2@k~x2w/2!#%2

1
GB2 sech2@k~x2w/2!#$11G2 tanh2@k~x2w/2!#22k~11G2!~x2w/2!tanh@k~x2w/2!#%

k$11G2 tanh2@k~x2w/2!#%2
, ~3.3!

where

B15F 1

E~W02E!
1

1

~E2W012c2!~E12c2!
G

and

B25F211
~W02E!

c2 G ,

and whereTp is given by
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Tp5
A11k2/c2

k S w

2
2x0D2

w

k S 11
E

c2D 1
W0~G211G!B1 tanh~kw!12w~G212G!B2 sech2~kw!

4$11@~12G2!2/4G2# tanh2~kw!%

1
W0GkB1 tanh@k~x2w/2!#12GB2~x2w/2!sech2@k~x2w/2!#

2k$11G2 tanh2@k~x2w/2!#%
. ~3.4!
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To test the validity of the analytical formula~3.4!, we have
superimposed on the curve in Fig. 6 the predictions acco
ing to this formula~circles! for the Schro¨dinger theory, and
the agreement is astonishing.

We should note that all analytical formulas derived in th
section are based only on the first spinor component of
wave function. In the previous sections we have shown
this approximation works quite well for predicting the wa
function outside the barrier region. However, inside the b
rier the other spinor components are more important and
agreement between the exact peak time computed from
spinor components of the Dirac solution and its analyti
approximation@Eq. ~3.4!# is only qualitative and not as goo
as in the nonrelativistic case. We observed that, if the p
time was computed only from the first spinor component
the exact Dirac state, the analytical estimate of Eq.~3.4!
~based on the first spinor! produces a relative error of les
than 1023%.

Let us finish with a quick comparison of the effectiv
tunneling speedve based on the spatial delay after the tu
neling event with the instantaneous speedvT introduced in
Eq. ~3.2!. As an example, for the parameters discussed in
previous section~x052100 a.u., v05100 a.u.! we found
that the spatial delay wasD525.531023 a.u. for a wave
packet that was associated with a temporal delayDT
525.531025 a.u. Using Eq.~2.7! we associated this dela
with an effective average tunneling speed ofve564.5 a.u.
For these parameters, the graph in Fig. 6 shows that
center of the wave packet formed from the incoming a
reflected waves reaches the left edge at the timeTL
51.000 030 5 a.u., which due to the interference is alre
. Y

v.

e
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delayed compared to the arrival time of a force-free wa
packet (TL

(0)50.999 950 0 a.u.). Figure 6 also shows that t
tunneled portion reaches the right edgex5w/2 at a time
TR51.000 106 8 a.u. As a result, the time the electron
spent under the barrier is onlyTR2TL50.000 076 3 a.u.,
which is shorter than the corresponding timeTR

(0)2TL
(0)

5w/v050.0001 a.u. of the force-free electron. This tim
would amount to an average tunneling speed ofv̄T5w/(TR
2TL)5131 a.u. This average velocityv̄T is much larger than
the effective tunneling speedve calculated above in Sec. II
This huge difference~between 64.5 and 131 a.u.! is due to
the delay of the wave function already present on the
edge of the barrier before the electron enters the poten
The speeding up of the particle under the barrier~associated
with v̄T5131 a.u.! is compensated by the slowing down b
fore entering the barrier, so that the effective speed that ta
both mechanisms into account amounts to a net value of 6
a.u. We will present a more detailed discussion of the gen
properties ofvT elsewhere.
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