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Abstract. The stabilization of atoms in the presence of very intense and short laser pulses has
been proposed and confirmed in various numerical simulations (e.g. Suet al). A question was
then raised by several authors (Chen and Bernstein, Krainov and Preobrazhenskii, and Geltman)
concerning the possibility of producing such stabilization in a one-dimensional model atom with
zero range of electron–nucleus interaction. In this paper we report evidence of stabilization
through the suppression of ionization for such a model atom. We find that the use of a high-
frequency laser pulse is necessary for such a realization.

1. Introduction

The ionization of an atomic system in the presence of a laser field at the 1013 W cm−2

intensity level is typically very poorly predicted by any perturbative formula. For such
laser intensities one even has to be concerned with whether the ionization grows in time
with a unique rate. Theoretical investigations of such fundamental questions have partially
resorted to numerical solutions of the time-dependent Schrödinger equation (Kulander
1987, Javanainenet al 1988, Kulanderet al 1991, Su 1993, Burnettet al 1993). Such
time-dependent analyses revealed signatures of the ionization that confirmed, at least
qualitatively, agreement with observations obtained experimentally. This includes the above
threshold ionization (ATI) electron energy spectrum (Agostiniet al 1979, Eberlyet al 1991,
Bucksbaum and Freeman 1991) and the generation of high-order harmonics in very intense
laser pulses (McPhersonet al 1987, Ferrayet al 1988, Balcou 1996).

In addition, predictions of so-called atomic stabilization, or laser stabilization of
atoms, in very intense laser light have appeared (e.g. Gersten and Mittleman 1976,
Gavrila and Kaminski 1984). Adiabatic stabilization is the counter-intuitive steady-state
situation in which ionization of an atomic electron is prevented under the influence of
an asymptotically high-frequency and high-intensity radiation field of constant amplitude.
Adiabatic stabilization is usually associated with specific dressed-field eigenstates in the
Kramers–Henneberger picture (see Pontet al 1988, Kramers 1956, Henneberger 1968).
Dynamic stabilization is similar but not a steady-state phenomenon. It refers to the
strong suppression of ionization initiated during a rapidly turned-on laser pulse. Adiabatic
stabilization is generally presumed to be a limiting version of dynamic stabilization, and
which can be achieved if the laser pulse can be turned on sufficiently slowly and to a very
high intensity, without suffering 100% ionization in the process. It has never been shown
rigorously that this is possible for any finite pulse-switching, although it is strongly suggested

0953-4075/96/235755+10$19.50c© 1996 IOP Publishing Ltd 5755



5756 Q Su et al

by many numerical studies. Rigorous analysis of dynamic stabilization has recently been
initiated (see Fringet al 1996). Dynamic stabilization was first observed for a realistically
pulsed laser interaction on a one-dimensional model atom with a long-range binding potential
(Su et al 1990, Su and Eberly 1990, Su 1993). Stabilization has also been confirmed in
calculations for a three-dimensional hydrogen atom (Dörr et al 1990, Pont and Gavrila
1990, D̈orr et al 1991, Kulanderet al 1991). Both kinds of stabilization are described in
the recent review by Eberly and Kulander (1993).

However, in a recent study of the photo-detachment of a model negative ion, Geltman
has come to conclusions very different from these authors (Geltman 1994, 1995). In
Geltman’s study the electron–nucleus interaction has the form of a delta functionV (x) =
−Bδ(x). Previous delta-potential studies also exist (Grozdanovet al 1990, Mostowski and
Eberly 1991, Sanperaet al 1993, Volkovaet al 1994). On the basis of his results, Geltman
questioned strongly the existence of both adiabatic and dynamic stabilization. He discussed
the ionization of his one-dimensional system in three regions, i.e. the regions of multiphoton
ionization (MPI), tunnelling ionization (TI), and over-the-barrier ionization (OBI).

In the present paper, we report the results of our recent time-dependent ionization
calculations which also employ a zero-range model negative ion (for stabilization in another
model negative ion, see Grobe and Fedorov (1992)). In the following discussions, we will
use ionization and photo-detachment interchangeably even though it is more realistically
called detachment for a short-range potential. We show convincing evidence of dynamic
stabilization for certain conditions of intense laser pulses. Earlier studies of stabilization
for such a potential have already been carried out but in a slightly different context. In
that case the laser was assumed to be switched on abruptly (Sanperaet al 1993). Such an
assumption is not a safe one in maintaining a stabilized state of an atomic electron. The
question of whether a bound electron can survive the pulse turn-on has not been addressed
for this potential.

We have made our calculations with the electron initially in the sole negative-energy
state of the field-free delta potential and exposed to pulses of both smooth and abrupt shapes.
We find clear evidence of stabilization as a distinct process in super-strong laser fields in
addition to the MPI, TI and OBI processes under other laser conditions. We suggest that
such a stabilization process takes place only when the field frequency is high enough that
the optical period is considerably shorter than the electron orbital period in the absence of
the field. It has already been shown that this frequency condition can be safely violated if
the potential is not zero-range in character (Lawet al 1991).

2. The model atom

To simulate the one-dimensional delta potential we take a one-dimensional square well (with
depthD and widthw, chosen in such a way thatD × w = B). We then reduce the width
w and increaseD = B/w, in such a way that the total areaB is unchanged. In the limit
w → 0 the energy and wavefunction of the only bound state will approach that of a delta
potential

V (x) = −Bδ(x), (1)

with the only bound-state energy given by

Wb = −mB2

2h̄2 , (2)
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and the corresponding eigenfunction

ub(x) =
√

mB

h̄
e−mB|x|/h̄2

. (3)

Here B is the strength of the potential,m is the mass of the electron and ¯h is Planck’s
constant. The convergence of the energy to the delta-potential energy goes approximately
asw × B4.

The eigenvalue problem of the field-free system is solved by the standard finite difference
method on a space grid. This involves the replacement of the second derivative by the finite
difference, three-point formula. The resulting matrix equation is diagonalized by placing the
atom in a large box and applying the boundary condition of the first kind. For a typical run
the box size is 2000 (we adopt atomic units hereafter unless otherwise specified), and the
potential width is chosen atw = 0.244. With B = 1

2, the energy comes out to be 0.1245,
about 0.4% off the exact value. The eigenfunction converges to the analytical form with
about the same accuracy.

3. Ionization in weak fields

The coupling of the model atom with a laser field occurs through a dipole interaction
Hamiltonian. The resulting time-dependent Schrödinger equation has the form(

−1

2

∂2

∂x2
+ V (x) + xE0f (t) sinωt

)
9(x, t) = i

∂

∂t
9(x, t). (4)

This equation will be solved for various laser intensities(I = E2
0) and frequenciesω. Here

f (t) 6 1 describes the shape of the laser pulse, which we switch on and off smoothly
according tof (t) = sin2(πt/Ton), for 0 6 t 6 Ton. A plot of such a pulse envelope is
shown in figure 1. Between the pulse turn-on and the turn-off, the field is kept at a constant
peak value.

Figure 1. The pulse envelope function of a laser field, showing a smooth turn-on, a constant
peak value, followed by a smooth turn-off.

The Schr̈odinger equation is first transformed into thepA form with the transformation

9(x, t) = eiA(t)x/c9A(x, t). (5)
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The resulting equation[
−1

2

(
−i

∂

∂x
+ A(t)

c

)2

+ V (x)

]
9A(x) = i

∂

∂t
9A (6)

is then integrated by the so-called split operator method (Feitet al 1982). The one-step
wavefunction advancement in time follows

9A(t + 1t) = F−1[e− i
4 (k+A/c)21tF [e−iV 1tF−1[e

i
4 (k+A/c)21tF [9A]]]] . (7)

HereF [ . . .] andF−1[ . . .] represent the Fourier and the inverse Fourier transforms as defined
below:

F [9] ≡ 9̃ ≡
∫

dx√
2π

e−ikx9(x); F−1[9̃] ≡
∫

dk√
2π

eikx9̃(k). (8)

The resulting wavefunction is then back-transformed frompA to dE form.

Figure 2. Total ionization probability is plotted
(a) as a function of time for a laser withω =
0.2 au andE0 = 0.01 au. The pulse turn-on took
two optical cycles; the constant peak field lasted
10 cycles; the turn-off took two cycles. In (b),
the probability densities are plotted at selected
instances (0, 2, 4, 6, 8, 10 and 14 cycles) for the
same laser pulse conditions.

We have obtained solutions for9 for one-photon ionization with laser–atom parameters
suggested by Geltman’s (1994) investigation. They areB = 1

2, ω = 0.2, E0 = 0.1.
Following Geltman, the pulse is turned on in two optical cycles, held at its peak for 10
cycles, and turned off in two cycles. Figure 2(a) shows the total probability of ionization
as a function of time, defined as

P(t) = 1 − |〈ub|9(t)〉|2. (9)

Some snapshots of the wavepacket during the course of the laser pulse are plotted in
figure 2(b). These plots correspond to Geltman’s results (see figures 2 and 5 of Geltman
(1994)).
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Figure 3. Total ionization probability is plotted
(a) as a function of time for a laser withω = 1
andE0 = 4 au. The sine-squared pulse turn-on
took seven optical cycles; the turn-off took seven
cycles. Residual population in bound levels after
the pulse are visible. It can be attributed to
the stabilization of the atom during the pulse.
In (b), the probability densities are plotted at
selected instances (0, 2, 4, 6, 8 and 10 cycles)
for the same laser pulse conditions. Note that the
vertical scale for each plot has been enlarged by
two decades for a better view.

4. Stabilization in super-strong fields

To find evidence of stabilization in super-strong fields, it is known that it is necessary to go to
high laser frequency. Therefore, we recalculated the ionization probability with parameters
B = 1

2, ω = 1, andE0 = 4. The pulse was turned on in seven cycles before being turned off
in another seven cycles. The ionization probability as defined in equation (9) is plotted in
figure 3(a), which shows oscillations of the projection of the wavefunction onto the field-free
energy states. Twice every optical cycle there is a large projection. Such a high frequency
oscillation has been discussed in our earlier publications about stabilization (Suet al 1990,
Su and Eberly 1990). The oscillation is understood to arise from the large-amplitude quiver
motion of a nearly free electron in the presence of the laser field.

This high-intensity excitation also has an effect on the spatial localization of the electron,
as shown in figure 3(b). The total amount of ionization after the pulse is smoothly turned off
at the fourteenth cycle is nearly 85%, i.e. 15% of the bound-electron probability survives.
Snapshots of the electron wavefunction taken during the pulse at selected instances are
shown in figure 3(b). Here the localization of the electron wavepacket is evident. Such a
localized electron wavepacket oscillates about the nucleus atx = 0 at the laser frequency.
As a result, twice each cycle the packet has very little overlap withub(x), which produces
the oscillation in ionization probability at twice the laser frequency shown in figure 3(a)
and mentioned above.
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Figure 4. End-of-pulse ionization is plotted as a function of laser peak intensity. The
laser pulse turned on and off (sine-squared ramps) in three optical cycles. In between, the
constant laser field lasted eight optical cycles. The frequency of the laser field oscillation
was ω = 1 au. An ionization suppression is visible afterI0 = 3 au. (The atomic units of
intensity= 3.5 × 1016 W cm−2.)

5. The transition to stabilization and beyond

We have also made a series of one-photon ionization computations for parameters similar
to figure 2 except for the peak intensity value and the pulse shape. The pulse was turned
on in three cycles, and held for eight cycles at the peak value before being turned off in
another three cycles. The ionization probability after each pulse is plotted as a function of
the peak intensity(I0 = E2

0) in figure 4, which shows three characteristic ionization regions
(Su and Eberly 1991). The first region has been referred to as the weak-field region. In
figure 4 this means the regionI0 � 0.2. On the log–log scale, in this region the curve
approaches a straight line with slope 1. This is the perturbative prediction for a one-photon
process.

The second region is referred to as the strong-field region. In figure 4 it covers a small
region aroundI0 ≈ 1. Here almost 100% of the population ends up in the continuum after
the pulse. The third region is referred to as the super-strong-field region. In figure 4 it
corresponds to the regionI0 > 3. In this region we find that ionization is more suppressed
as the peak intensity is increased, and figure 5 shows that the degree of stabilization at
I0 = 6.8 is, for instance, close to 25%.

Figure 5 also shows that the stabilization shown in figure 4 is not monotonic. From
I0 = 6.8 to I0 = 10.3 a recovery of ionization appears (Su 1996, Suet al 1996; see also
Yao and Chu 1992, Millack 1993). Such a recovery structure is to be expected when an
atom stabilizes in super-strong laser fields. At still higher intensity, aroundI0 ≈ 20 in
figure 5, the total ionization probability starts to increase slowly to 100% again. Such an
increase in ionization has been observed in other models, either when the field strength is
strong or the pulse turn-on is short (Suet al 1990, Kulanderet al 1991), as found in the
square pulse case discussed in section 6. If the rise time is held fixed and the peak intensity
is increased, the bandwidth that the bound population experiences will eventually approach
the square pulse case. It appears in our example that an intensity increase rate of more than
five atomic units per cycle will lead to such an ionization. The mechanism for the small



Stabilization of short-range atom in laser fields 5761

Figure 5. A replot of figure 4 on a wider intensity range, showing recovery structure during the
stabilization.

but noticeable oscillations during the stabilization and beyond will be discussed separately
in a later paper.

6. Remarks on the pulse shape

Lasers have smooth pulse shapes. Such a feature can be taken into account in numerical
studies explicitly, but is frequently overlooked. One of the reasons is that most ionization
effects do not exhibit differences on a qualitative basis with the selection of different pulse
shapes. Therefore, to choose an over-simplified square pulse is simply very convenient.
In the strong laser intensity limit, on the other hand, the pulse shape becomes crucially
important since ionization can be accomplished quite effectively during the turn-on or turn-
off edges of the pulse (e.g. Grobe and Fedorov 1992, Haan 1996). Stabilization is an effect
that is definitely pulse-shape sensitive.

To support this remark, in figure 6 we have compared our computed end-of-pulse
ionization for a smooth pulse with that of a square pulse. The smooth pulse is the same
one used for the calculation shown in figure 5, but re-plotted. The sine-squared turn-on,
constant peak value and sine-squared turn-off periods are separately fixed at three, eight and
three cycles. The 14-cycle square pulse is turned on and off instantaneously. It is evident
from figure 6 that the square pulse ionization curve grows smoothly, reaches 100% around
I0 ≈ 0.2, and stays at 100% for all greater peak intensities.

The explanation of zero stabilization for the square pulse can be thought of as due to the
large frequency band in the original pulse which couples the initial bound state to a large
number of continuum states. The result is a burst of ionization during the turn-on cycles. It
appears Geltman has arrived at his observations of no stabilization partially from results due
to pulses without turn-on (Geltman 1995). It comes without surprise that no stabilization
was seen in his results. His other investigations (Geltman 1994, 1995) in very high laser
intensities including pulses with turn-on suffered from numerical convergence problems, and
technical difficulty has also been indicated (Geltman 1995). Conclusive statements from
such a limited set of investigations should be made very cautiously.
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7. Comments on the high-frequency condition

We would like to mention that the high-frequency condition makes the so-called over-the-
barrier ionization picture a very poor one. In that picture, ionization can be thought of as a
field-free bound potential being tilted by a static electric field representing the laser at the
peak value. Such a tilt in the potential will suppress the potential barrier on the one side and
enlarge the probability of quantum tunnelling. If the peak field strength is high enough, the
potential barrier can be suppressed so much that it is lower than the initial energy level. This
picture is convenient in explaining the transition from multiphoton ionization to tunnelling
ionization to over-the-barrier ionization (or barrier suppression ionization).

The over-the-barrier ionization picture is successful in the low laser frequency limit. It
works well when the period of the electric field is much slower than the orbital periods of
the relevant levels. In such a case, the field can be regarded as static and electrons can
effectively escape the suppressed potential barrier.

In the opposite limit, when the optical period is much greater than the orbital period, the
electron cannot escape before the lowered potential becomes a raised potential. Following
such reasoning, the barrier suppression picture loses its validity in the high-frequency limit.
A concrete example is illustrated in figure 7, in which the end-of-pulse ionization signal is
plotted as a function of laser frequency. The figure shows that the degree of stabilization
increases with increasing laser frequency. We note that the oscillation observed in figure 7
can be related to the oscillation in figure 5.

8. Conclusion

We have re-examined photoionization from a zero-range potential as a function of field
intensity, and under different pulse turn-on and turn-off conditions. The ionization found in
weak fields is consistent with the perturbation theory prediction. For a high-frequency laser

Figure 6. End-of-pulse ionization is plotted as a function of laser peak intensity. Results from
two different laser pulse shapes are compared. The lower curve is replotted on a different scale
from figure 5, but uses the same data shown there for 14-cycle pulses with a 3–8–3 cycle shape
and sine-squared turn-on and turn-off. The upper curve is produced from 14-cycle laser pulses
with a ‘square’, or abrupt turn-on, turn-off, shape. The laser frequency remainsω = 1 au. It is
evident that stabilization is absent from the square pulse ionization.
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Figure 7. End-of-pulse ionization is plotted as a function of laser frequency, for pulses with the
smooth 3–8–3 cycle shape of figures 4–6. The peak laser field strengthE0 = 4 au. An overall
increase in the degree of stabilization is seen with the increase of laser frequency.

field we found clear evidence of dynamic stabilization in a wide range of laser intensities.
This conclusion about stabilization is in disagreement with three previous investigations
(Chen and Bernstein 1993, Krainov and Preobrazhenskii 1993, Geltman 1994, 1995), but we
have presented evidence that a finite (although very rapid) turn-on is essential in stabilizing
the atom. Statements based on instantaneous turn-on (Geltman 1994, 1995) must not be
accepted generally. We would like to remark that the Chen and Bernstein calculation dealt
with a one-dimensional electron moving in a bound potential with an impenetrable wall
(Chen and Bernstein 1993). It is known that stabilization requires the distortion of the
electron trajectory in the oscillating laser field so that its probability near the nucleus, which
causes ionization, is small. It is not clear that the impenetrable wall potential of Chen
and Bernstein permits such distortion of the electron trajectory. Therefore, we would note
that the Chen and Bernstein result, often quoted (Geltman 1995) as supporting the case
against the existence of stabilization, may be irrelevant to the discussion of stabilization.
The stabilization observed here is in agreement with that found in another potential (Suet
al 1990, 1993, Su and Eberly 1990, 1991, Burnettet al 1993).
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