Learning Sequences arising from August 28, 2010, Zone Leaders Meeting at ISU

Learning Sequence #1:

	Discovery	Interactive	Inquiry	Inquiry
s/ropes/strings	Learning	Demonstration	Lesson	Lab
	Students develop an understanding	Students observe the effect of changing	Using a variable oscillator (whose	Students use dimensional analysis
	of the nature of physical waves and	tension, frequency (akin to pitch), and	frequencies are known) and a meter stick,	and the statement $\lambda = f(T, \mu, f) - $
	wave propagation using a Slinky,	length on a stringed instrument to discover	student working under the guidance of the	this is, wavelength is a function
	rope, and string. Concepts of	Mersenne's laws. Using Socratic dialogue	teacher conduct a controlled experiment to	of tension, linear mass density of
	amplitude, frequency, period, and	and properly controlled demonstrations,	discover the inverse relationship between	the medium, and frequency –
	wavelength are developed using	the teacher gets the students to determine	wavelength and frequency of standing	derived from observations to find
	Slinky and given names using both	the general relationships between tension	waves on a string. Students conclude that	the expected form of the
16	transverse and longitudinal waves.	and frequency (e.g., the greater the tension	the product of wavelength and frequency	relationship between variables.
springs/r	Students relate period to frequency:	the higher the frequency), between length	equals a constant. That is, $\lambda f = c$.	That is, $v = \lambda f = \sqrt{T/\mu}$.
sp	f = 1/t. The effect of changing	and frequency (e.g., as length increase, the	Dimensional analysis is then used to show	Students use an experimental set
on	medium density is described based	frequency decreases), and between linear	that the units of the constant are those of	up in which they can control
6	on wave propagation down a rope	density and frequency (e.g., the greater the	speed. Teacher draws parallels between v,	frequency, tension, and linear
ave	tied to a string. Students develop	linear mass density, the lower the	d, and t, and wave counterparts to show that	mass density of a string to
Wa	standing waves. (N.B. frequency	frequency). The non-relationship of	the constant, <i>c</i> , in the above equation equals	confirm the expected form of the
	and pitch are not identical, but will	amplitude to other system variables is	speed of propagation. That is,	relationship.
	be treated as such here.)	addressed.	$\lambda f = \lambda_t = d_t = v = c.$	- r ·
	Hypothetical Inquiry:	L	. ,. ,.	•

Learning Sequence #2:

	Discovery	Interactive Demonstration	Inquiry	Inquiry
ns of Air	Learning		Lesson	Lab
	Students are provided with bottles	Students are introduced to various "slider toy"	Tuning fork held over top of an	Students use knowledge of waveform
	filled with different amounts of	instruments or various brass and woodwind	open-ended PVC pipe with one	representations and an experimental
	water, and asked to produce sound	instruments and relate lengths over various	end immersed in water is used to	setup consisting of tuning fork (of
m	by blowing across the mouths of	open-ended air columns to the frequencies	show resonance phenomena.	known frequency) and PVC pipe
lu	the bottles. Students work out the	produced. Students compare and contrast the	Students investigate ways to	(open ends on tube with one end
ŭ	concept that the shorter the column	lengths of oscillating air columns and vibrating	represent the motion of gas	immersed in water) to find resonance
50	of vibrating air, the higher the	stings to see the parallels between propagation	particles for standing waves in	points to determine the speed of sound
ting	pitch of the sound generated.	of oscillations and vibrations. Students use	pipes. This is, they develop	in air. Speed of sound in air is derived
ra	Students speculate as the source of	open-ended PVC pipes to play music by	waveform representations.	from the relationship $\lambda f = v$.
ib	the sound.	rapping pipes on palms of their hands.		
\geq				
	Hypothetical Inquiry:			