Reconciling Experimental with Theoretical Relationships

When students graph relationships between variables in relationships that contain known proportionality constants such as " g ", how does one extract such terms from the proportionality constant if it is know to be present?

Consider the traditional pendulum lab conducted in a region where the acceleration due to gravity is $9.810 \mathrm{~m} / \mathrm{s}^{2}$. When students graph period squared $\left(t^{2}\right)$ versus length (l) to get a linearized relationship, they find a proportionality constant of approximately $4.024 s^{2} / \mathrm{m}$. That is,

$$
t^{2}=\left(4.024 \frac{s^{2}}{m}\right) l
$$

Writing this in the more traditional form yields the following version of the relationship:

$$
t=2.006 \frac{s}{m^{1 / 2}} \sqrt{l}
$$

Now, how does one extract " g " from this experimentally determined constant so that students can reconcile the relationship with the theoretically derived form that frequently appears in textbooks as follows?

$$
t=2 \pi \sqrt{\frac{l}{g}}
$$

That is, how can one logically show that $2.006 s / m^{1 / 2}=2 \pi / \sqrt{g}$ in this case? The answer resides with the use of dimensional analysis. Consider the following dimensional analysis assuming t is a function of l and g and starting with the assumed form of the relationship:

$$
\begin{aligned}
& t \propto l^{x} g^{y} \\
& s^{1} \propto m^{x}\left(\frac{m}{s^{2}}\right)^{y} \\
& m^{0} s^{1} \propto m^{x+y} s^{-2 y}
\end{aligned}
$$

Now, equating exponents on s and m respectively one finds:

$$
\begin{array}{ll}
1=-2 y \\
y=-\frac{1}{2} & \text { and } \\
0 & 0=x+y \\
x=\frac{1}{2}
\end{array}
$$

Inserting the exponents of x and y and replacing the proportionality with an equality sign and proportionality constant in the assumed form of the relationship $t \propto l^{x} g^{y}$ yields

$$
t=\text { const } \sqrt{\frac{l}{g}}
$$

Now, gathering all constant terms in this equation yields:

$$
t=\frac{\text { const }}{\sqrt{g}} \sqrt{l}
$$

Equating the two sets of constants in the experimental and theoretical forms of the relationships respectively, one gets:

$$
\begin{aligned}
& 2.006 \frac{s^{2}}{m}=\frac{\text { const }}{\sqrt{g}} \\
& \text { const }=2.006 \frac{s^{2}}{m} \sqrt{g} \\
& \text { const }=2.006 \frac{s^{2}}{m} \sqrt{\frac{9.810 m}{s^{2}}} \\
& \text { const }=6.283 \\
& \text { const }=2 \pi \quad(\text { approximately })
\end{aligned}
$$

Hence, replacing the experimentally determined proportionality constant $2.006 \mathrm{~s}^{2} / \mathrm{m}$ with $2 \pi / \sqrt{g}$ yields an experimental formula that is completely consistent with the theoretical version.

$$
t=2 \pi \sqrt{\frac{l}{g}}
$$

