Contrasting Cookbook with Inquiry-Oriented Labs

By Carl J. Wenning, Coordinator Physics Teacher Education Program Illinois State University Last updated 2/23/2004

	T
Traditional Cookbook Labs	Authentic Inquiry-Oriented Labs
Based on detailed set of instructions.	Based primarily on guiding questions.
Students follow step-by-step directions to conduct experiment.	Students develop own experimental design.
Questions, if present, tend to be leading questions – asking	Many questions included in guidelines; questions are unbiased
students to confirm an observation or make a calculation.	– asking students to merely report or draw own conclusions
	from evidence.
Require minimum intellectual involvement.	Require ongoing intellectual engagement.
Lab strongly oriented toward gathering and interpreting	Lab strongly oriented toward developing a strong conceptual
numerical data.	understanding.
Student activity focuses on verifying information	Student activity focuses on discovering new concepts,
previously communicated in class.	principles, or empirical relationships.
Confirmatory – follow class presentation of material.	Discovery – serve to lead subsequent class discussion.
Generally little communication, and what exists tends to	Discussion driven by a series of intellectually engaging
be one way – from teacher to student.	questions.
Rarely incorporates learning cycles (observation, generalization, application).	Engages one or more complete learning cycles.
Students provided data tables with specified ranges for specific types of data.	Students determine what type of data and how much of it to collect.
Tells student what data to collect.	Leaves it up to the students to determine what data to collect.
Students do not design experiment.	Students create experimental design on the basis of discovered
	principles.
Students communicate results only to course instructor	Students communicate and defend results to other participants
through lab reports.	in the lab session.
Emphasis on completing task.	Emphasis on achieving conceptual and scientific understanding using empirical data.
Students generally do not provide explanations.	Students asked to provide explanations adhering to rules of evidence.
Students generally do not predict, or predictions based	Students asked to generate predictions based upon deductive
upon known rules or laws.	processes.
Students generally do not use inductive processes.	Students asked to generate principles on the basis of inductive processes.
Student questioning not encouraged or actively discouraged.	Students, ideally, encouraged to ask questions and find answers to self-identified problems.
Students are told which variables to hold constant, and	Students identify, distinguish, and properly control pertinent
which to vary, which are independent and which	independent and dependent variables.
dependent.	
Students provided with a fixed instrumentation set up.	Students provided with a variety of technology and instrumentation but no fixed set up.
Very little interaction between lab instructor and students.	Large amounts of question-drive interaction between lab instructor and students.
Students are directed to solve an instructor-identified	Students identify problems to solved based on observations of
problem or problems.	unusual phenomena.
Students told precisely how to analyze and interpret data.	Students use their own approaches to analyzing and
2 total provider, no. to unuity20 unu interpret uutu.	interpreting data.
Promotes dependency.	Promotes independence of thought and action.
Employs lower-order thinking skills.	Promotes higher-order thinking skills.
Rule-conforming behaviors.	Rule-creating behaviors.
Task often seen as boring.	Task generally seen as engaging.
Focus on piecemeal understanding.	Focus on holistic understanding.
Focus on completing tasks.	Focus on learning science.
Less time on task as students/teaching assistant often	More time on task as there is a very brief introduction and
spend lots of time going over the instructions.	students create their own instructional design.
Students tend to report "just the facts."	Inquiry questions form basis of lab report.

Experiment unlike the real thing.	Lab approximates the methods of good science
Questions to be investigated decided by the teacher	Questions, ideally, decided by the investigator.
What equipment to use, how to calibrate it, what data to	Investigators, ideally, have access to a variety of equipment
collect, and how to organize data determined by teacher.	and are responsible for appropriate use to collect pertinent data.
Linear process that does not normally allow for repetition	Nonlinear process that allows for repetition and revision of
or for advising an experiment.	experimentation.
Conclusion known ahead of time.	Discovery process uses empirical results to draw conclusion.
Restrictive, mechanical, recipe-following, rule-	Open-ended, dynamic, procedure-inventing, rule-creating
conforming behaviors.	behaviors.
Rarely requires familiarity with concept or principle being	Requires students to become familiar with the concept or
investigated.	principle being investigated or accounted for.
Lab driven by instructions.	Lab driven by unanswered questions.
Student told which variables to control, manipulate, and	Students identify and control pertinent variables (e.g.,
observe.	dependent, independent, controlled)
Students rarely draw conclusions from evidence.	Students use inductive processes to draw conclusions.
Discourages development of conceptual understanding of	Promotes development of conceptual understanding of
propositional and procedural knowledge.	propositional and procedural knowledge – a prerequisite for
	conducting a lab experiment.
Tends to emphasize the quantitative aspects of a physical	Includes an emphasis on conceptual and qualitative analysis of
phenomenon to the exclusion of conceptual and qualitative	physical phenomena.
understanding.	
Moves from abstract toward concrete.	Moves from concrete toward abstract.
Assumes understanding.	Constructs meaning.