Levels of Inquiry: Learning Sequence Exercise

Using your knowledge of Levels of inquiry: Hierarchies of pedagogical practices and inquiry processes (Wenning, C.J. (2005). *Journal of Physics Teacher Education Online*, 2(3), February 2005, pp. 3-11), create your own inquiry spectrum of physics lessons from a single topic area using the examples found below. Be prepared to present and explain your inquiry spectrum to the class.

	Discovery Learning: Students	Interactive Demonstration: The	Inquiry Lesson: Students	Inquiry Lab: Students are engaged
	observe pinhole projection with	instructor explains to students the	design and conduct	designing investigations in which
	the use of two index cards and a	use of a pinhole camera – two	investigations that call for	variables are controlled, and <i>measuring</i>
	clear light bulb with a large	boxes sliding in and out of one	qualitative <i>measurements</i> with	<i>metrically</i> is used as a means for
	filament. The first index card with	another with a pinhole in one end	the assistance of the instructor	quantifying data. The lab activity is "jig
	the pinhole is held closer to lamp;	(aluminum foil) and a projection	to find simple relationship	sawed" so that several simple
	the second index card is held in the	screen (white vellum or wax paper)	between d_i and h_i when d_o and	relationship from the inquiry lesson can
	shadow of the first. Students see	on the other. Students <i>predict</i> what	h _o are fixed. (<u>No measuring</u>	be evaluated. For instance, Groups will
	image produced on second index	would happen to h_i if d_i and d_o were	devices are permitted at this	establish empirical laws on the basis of
	card. Student <i>formulate</i> initial	varied. Students are further asked to	stage of the activity.) Students	evidence and logic. For instance, they
	ideas as to the process of image	explain what would happen if the	conduct another controlled	will find the relationship between d _o
	formation. They <i>draw conclusions</i>	size of the pinhole and the number	activity the goal of which is to	and h _i when d _i is held constant. Another
	about inversion, distinction	of the pinholes were increased.	describe the relationship	group will find the relationship between
	between image and object, and	Students are given pinhole cameras	between d_o and h_i when d_i and	d_i and h_i when d_o is held constant. The
	note that distance of the object (d_0)	and asked to interact with them in	h _o are held constant. Students	first group will find an inverse
	and distance of the image (d _i)	any meaningful fashion using	write conceptual relationships	relationship; the second group will find
	(both measured from the pinhole)	artificial light sources to <i>acquire</i>	such as "When d _i increases, h _i	a proportional relationship. Drawing
	have an effect on image height (h _i).	and process data. Students	increases if all else is held	these relationships together, and
0 U	The object height (h_o) is fixed.	complete a worksheet attempting to	constant." Students are asked to	looking at the system parameter of h _o ,
cn	Students image brightly-lit objects	explain the various observed	how they might conduct a	students find with the assistance of the
aſc	outside the classroom window or	phenomena. They <i>formulate and</i>	controlled experiment to	teacher that: magnification = $\frac{h_i}{h_i} = \frac{d_i}{d_i}$.
LI	overhead lamps in similar fashion.	revise explanations using logic and	determine the mathematical	$h_o d_o$
e J	Students <i>communicate results</i> as	evidence. Image inversion and	relationship(s) between the	(A negative sign can be introduced as
01	they relate to both inversion of	increasing/decreasing size also	associated variables.	appropriate if the distances are
'III	image and color.	explained using models.		considered vector quantities.)
I				
	Hypothetical inquiry: Students will	l use their knowledge of geometry (sim	ilar triangles) to <i>synthesizing comp</i>	plex hypothetical explanations deriving
	the relationship $\frac{h_i}{h_i} = \frac{d_i}{h_i}$ noting that magnification is merely a definition. They will <i>generate predictions</i> through the process of deduction, and <i>solve</i>			
	$h_a d_a$		· · · ·	·

complex real-word problems as provided by the teacher.