Some Practice Problems in Constant Acceleration Motion

In the problems below that involve free fall, use $9.81 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration due to gravity in metric units. For English units, use $32.2 \mathrm{ft} / \mathrm{s}^{2}$. Numerical answers are given for each problem.

1. A ball is dropped from a high window. After what time will its speed be $50 \mathrm{~m} / \mathrm{s}$? How far will it have fallen by that time? $\quad(5.10 \mathrm{sec}, 128 \mathrm{~m})$
2. A batter hits a fly ball straight up into the air. The catcher catches the ball 6 sec later. How high did the ball go? What was its original speed? This is Canadian baseball, so use metric units.
($44.1 \mathrm{~m}, 29.4 \mathrm{~m} / \mathrm{s}$)
3. A naughty student throws a water balloon straight down with a speed of $5 \mathrm{ft} / \mathrm{s}$ from a window 40 ft above the ground. When will the balloon hit the head of an innocent, 6 - ft -tall passerby?
What is its speed when it hits?
(1.31 sec, $47.1 \mathrm{ft} / \mathrm{s}$)
4. An electron with speed of $10^{4} \mathrm{~m} / \mathrm{s}$ enters a "forbidden" region where an electric force tries to push it back along its path with a constant acceleration of $10^{7} \mathrm{~m} / \mathrm{s}^{2}$. How far will the electron go into the "forbidden" region? How long will it be in that region? ($5 \mathrm{~m}, 0.002 \mathrm{sec}$)
