1. (2 pts) In the equation $F=\frac{G M m}{r^{2}}, F$ has units of $\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}, M$ and m have units of kg , and r has units of m. What are the units of G ?
a) $\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}}$
b) $\frac{m \cdot k g^{2}}{s^{3}}$
c) $\frac{\mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}$
d) $\frac{\mathrm{m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}$

Let's rewrite the equation, this time plugging in the units for each variable in the equations, leaving G in the equation to stand for the units of G, then solve for G.

$$
\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}=G \frac{\mathrm{~kg}^{2}}{\mathrm{~m}^{2}} \text { or } G=\frac{\mathrm{m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

2. (2 pts) Water flows through a pipe at a rate of $100000 \frac{\mathrm{gal}}{\mathrm{hr}}$. Convert this flow rate to $\frac{\mathrm{m}^{3}}{\mathrm{~s}}$.

Note that $1 L=1000 \mathrm{~cm}^{3}$ and $1 \mathrm{gal}=3.785 \mathrm{~L}$.
a) $0.105 \frac{m^{3}}{s}$
b) $2.71 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
c) $12.5 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
d) $286 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

$$
100000 \frac{\mathrm{gal}}{\mathrm{hr}} \times\left[\frac{3.785 \mathrm{~L}}{1 \mathrm{gal}}\right] \times\left[\frac{1000 \mathrm{~cm}^{3}}{1 L}\right] \times\left[\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right]^{3} \times\left[\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right] \times\left[\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right]=0.105 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

3. (2 pts) What is the value of $\frac{0.0370(297.2)}{11.56}+3.14159$ to the correct number of significant digits? Assume all values were reported by the experimenter who measured them.

Since 0.0370 only has 3 sig figs, the first term must be rounded to 3 sig figs. Then when you add the next term, you can only go out to the column in which there are significant figures in both terms. Thus $0.951+3.14159=4.093$ (since there's a 5 in the next column of the other term, you round that one up regardless of the unknown value in the other term).
4. (2 pts) Suppose you measure $x=10 \pm 1 \mathrm{~m}, y=20 \pm 1 \mathrm{~m}$, and $z=100 \pm 1 \mathrm{~m}$. If you now calculate $R=\frac{x y^{3}}{z^{2}}$, what is $\frac{\Delta R}{R}$?
a) 6%
b) 14%
c) 27%
d) 35%

As we discussed in class, this equation fits the special case (one term, only multiplication, division, and powers), so we can write

$$
\frac{\Delta R}{R}=\frac{\Delta x}{x}+3 \frac{\Delta y}{y}+2 \frac{\Delta z}{z}=\frac{1}{10}+3\left(\frac{1}{20}\right)+2\left(\frac{1}{100}\right)=0.27=27 \%
$$

5. (2 pts) Suppose $f(x)=x^{3}-9$.

$$
\frac{d f}{d x}=3 x^{2}
$$

$$
\int f(x) d x=\frac{x^{4}}{4}-9 x+C, \text { where } C \text { is a constant. }
$$

