1. Remember that froghopper from the homework? Let's take him to the moon, where the acceleration due to gravity is only $1.62 \mathrm{~m} / \mathrm{s}^{2}$. Suppose he uses his special jumping legs to accelerate upward at $4 \mathrm{~km} / \mathrm{s}^{2}$ for a distance of 2 mm . Ignore gravity for this acceleration phase. What is his upward velocity at the end of this acceleration phase? Assume positive is upward.
a) $1.00 \mathrm{~m} / \mathrm{s}$
b) $2.00 \mathrm{~m} / \mathrm{s}$
c) $3.00 \mathrm{~m} / \mathrm{s}$
d) $4.00 \mathrm{~m} / \mathrm{s}$

This one is almost straight out of the homework problem. You're given info about starting and ending position as well as acceleration, then you're asked for final velocity - that sounds like the stopping equation:

$$
\begin{aligned}
& v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right) \\
& v^{2}-0=2(4000)(0.002-0) \\
& v=4 \frac{m}{s}
\end{aligned}
$$

2. Assume the answer to $\# 1$ is $5 \mathrm{~m} / \mathrm{s}$ (it isn't, so just pretend). He is now 2 mm above the floor of his cage, headed upward, and his feet have left the floor. How fast is he going when he hits the top of his cage, 0.5 m above the floor? Ignore air resistance.
a) $1.90 \mathrm{~m} / \mathrm{s}$
b) $2.66 \mathrm{~m} / \mathrm{s}$
c) $3.52 \mathrm{~m} / \mathrm{s}$
d) $4.84 \mathrm{~m} / \mathrm{s}$

Another stopping equation, with new values of initial position and velocity:
$v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right)$
$v^{2}-5^{2}=2(-1.62)(0.5-0.002)$
$v=4.84 \frac{\mathrm{~m}}{\mathrm{~s}}$
3. How long does this upward flight in $\# 2$ take? (Ignore the short time required for the acceleration phase, and assume the answer to \#1 is still $5 \mathrm{~m} / \mathrm{s}$.)
a) 0.096 s
b) 0.101 s
c) 0.223 s
d) 0.307 s

You could get the time of this part of the flight several ways: 1) use your knowledge of the final velocity from problem 2 and use the velocity equation; or 2) use the distance equation and solve a quadratic. The first way is easy, so I'll do it the second way.

$$
\begin{aligned}
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& 0.5=0.002+5 t+\frac{1}{2}(-1.62) t^{2} \\
& 0.81 t^{2}-5 t+0.498=0 \\
& t=0.101 \mathrm{~s} \text { or } 6.07 \mathrm{~s}
\end{aligned}
$$

The earlier time is the one you want. The later time assumes the froghopper flew freely in the air and came back down to a height of 0.5 m .
4. Pretend the answer to $\# 2$ is also $5 \mathrm{~m} / \mathrm{s}$. Suppose he bounces off the top of the cage and heads back downward with a speed of $1.50 \mathrm{~m} / \mathrm{s}$. If this bounce takes 0.04 s , what average acceleration did the bounce cause? Assume positive is upward.
a) $-89 \mathrm{~m} / \mathrm{s}^{2}$
b) $-125 \mathrm{~m} / \mathrm{s}^{2}$
c) $-163 \mathrm{~m} / \mathrm{s}^{2}$
d) $-204 \mathrm{~m} / \mathrm{s}^{2}$
$a_{\text {avg }}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{-1.5-5}{0.04}=-162.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
5. He now returns to the ground. How long does this downward flight take?
a) 0.175 s
b) 0.288 s
c) 0.312 s
d) 0.455 s
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$0=0.5+(-1.5) t+\frac{1}{2}(-1.62) t^{2}$
$0.81 t^{2}+1.5 t-0.5=0$
$t=0.288 s$ or $-2.14 s$

Some possibly useful equations for 1-dimensional motion with constant acceleration:
$a_{\text {avg }}=\frac{\Delta v}{\Delta t} \quad v=v_{0}+a t \quad x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \quad v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right)$
To solve $A x^{2}+B x+C=0, x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

